bessel v : Bessel functions: J, Y, I, K and modified ones (j,y,i,k)
bessel real or array of real
kind string : a character in [J,Y,I,K,j,y,i,k]
index integer : order of the function: an integer (i1≥0) or a range {i1,i2} (0 ≤ i1 ≤ i2)
[scaled boolean] : default: false. J and Y are never scaled, i and k are always scaled
→ real : a real or an array of real
dawson v : the Dawson integral: \exp(-x^2) \int_0^x dt \exp(t^2)
dawson real or array of real
→ real : a real or an array of real
debye v : the Debye functions D_n(x) = n/x^n \int_0^x dt (t^n/(e^t - 1))
debye real or array of real
index integer : order of the function: an integer 1≤i≤6
→ real : a real or an array of real
EllipticE v : EllipticE integral \int_0^1 dt sqrt(1-x^2*t^2)/sqrt(1-t^2)
EllipticE real or array of real
→ real : a real or an array of real
EllipticK v : EllipticK integral \int_0^1 dt 1/(sqrt(1-t^2)*sqrt(1-x^2 t^2))
EllipticK real or array of real
→ real : a real or an array of real
expint v : Exponential integral functions \int_a^b dt f(t)/t^n (noted as [a,b,f(t),n]).
expint real or array of real
kind string : see table below
index integer : relevant for expint_En
→ real : a real or an array of real
kind |
: |
|
[ |
a |
, |
b |
, |
f(t) |
, |
n |
] |
expint_E1 |
: |
|
[ |
1 |
, |
\infty |
, |
\exp(-xt) |
, |
1 |
] |
expint_E2 |
: |
|
[ |
1 |
, |
\infty |
, |
\exp(-xt) |
, |
2 |
] |
expint_En |
: |
|
[ |
1 |
, |
\infty |
, |
\exp(-xt) |
, |
index |
] |
expint_Ei |
: |
-PV{ |
[ |
-x |
, |
\infty |
, |
\exp(-t) |
, |
1 |
] |
} |
Shi |
: |
|
[ |
0 |
, |
x |
, |
\sinh(t) |
, |
1 |
] |
Chi |
: |
gamma+\ln(x) + |
[ |
0 |
, |
x |
, |
\cosh(t)-1 |
, |
1 |
] |
expint_3 |
: |
|
[ |
0 |
, |
x |
, |
\exp(-t^3) |
, |
0 |
] |
Si |
: |
|
[ |
0 |
, |
x |
, |
\sin(t) |
, |
1 |
] |
Ci |
: |
- |
[ |
x |
, |
\infty |
, |
\cos(t) |
, |
1 |
] |
atanint |
: |
|
[ |
0 |
, |
x |
, |
\arctan(t) |
, |
1 |
] |
fractionalbessel v : Fractional Bessel functions: J, Y, I, K
fractionalbessel real or array of real
kind string : a character in [J,Y,I,K]
index real : order of the function : a positive number
[scaled boolean] : default: false. J and Y are never scaled
→ real : a real or an array of real
gegenbauer v : Gegenbauer polynomials also known as ultraspherical polynomials
gegenbauer real or array of real
index integer : order of the function: an integer (i1≥0) or a range {i1,i2} (0 ≤ i1 ≤ i2)
[parameter real] : parameter a>-1/2 (default 0)
→ real : a real or an array of real
hzeta v : the Hurwitz zeta function is defined by \zeta(s,q) = \sum_0^\infty (k+q)^{-s}
hzeta real : s≠1 is a real or an array of real
parameter real : parameter q>0
→ real : a real or an array of real
laguerre v : The Laguerre polynomials are defined in terms of confluent hypergeometric functions as L^a_n(x) = ((a+1)_n / n!) 1F1(-n,a+1,x).
laguerre real or array of real
index integer : order of the function: an integer (i1≥0) or a range {i1,i2} (0 ≤ i1 ≤ i2)
[parameter real] : parameter a>-1 (default 0)
→ real : a real or an array of real
LambertW0 v : Lambert's W functions, W(x), are defined to be solutions of the equation W(x) \exp(W(x)) = x. This function is defined for x>-1/e and has multiple branches for x < 0; however, it has only two real-valued branches. We define W_0(x) to be the principal branch, where W > -1 for x < 0, and W_{-1}(x) to be the other real branch, where W < -1 for x < 0.
LambertW0 real or array of real
→ real : a real or an array of real
LambertWm1 v : see LambertW0
LambertWm1 real or array of real
→ real : a real or an array of real
legendre v : Legendre polynomials
legendre real or array of real
index integer : order of the function: an integer (i1≥0) or a range {i1,i2} (0 ≤ i1 ≤ i2)
→ real : a real or an array of real
polygamma v : The polygamma functions of order m defined by (d/dx)^{m+1} \log(\Gamma(x)) (for m=0 : digamma function)
polygamma real or array of real
index integer : order of the function : an integer (≥0)
→ real : a real or an array of real
zeta v : the Riemann zeta function is defined by the infinite sum \zeta(s) = \sum_{k=1}^\infty k^{-s}.
zeta real : s≠1 is a real or an array of real
→ real : a real or an array of real